本文共 9940 字,大约阅读时间需要 33 分钟。
该系列会逐步更新,完整的讲解目前主流框架中底层相通的技术,接下来的代码内容都会更新在
众所周知,操作 DOM 是很耗费性能的一件事情,既然如此,我们可以考虑通过 JS 对象来模拟 DOM 对象,毕竟操作 JS 对象比操作 DOM 省时的多。
举个例子
// 假设这里模拟一个 ul,其中包含了 5 个 li[1, 2, 3, 4, 5] // 这里替换上面的 li[1, 2, 5, 4]
从上述例子中,我们一眼就可以看出先前的 ul 中的第三个 li 被移除了,四五替换了位置。
如果以上操作对应到 DOM 中,那么就是以下代码
// 删除第三个 liul.childNodes[2].remove()// 将第四个 li 和第五个交换位置let fromNode = ul.childNodes[4]let toNode = node.childNodes[3]let cloneFromNode = fromNode.cloneNode(true)let cloenToNode = toNode.cloneNode(true)ul.replaceChild(cloneFromNode, toNode)ul.replaceChild(cloenToNode, fromNode)
当然在实际操作中,我们还需要给每个节点一个标识,作为判断是同一个节点的依据。所以这也是 Vue 和 React 中官方推荐列表里的节点使用唯一的 key
来保证性能。
那么既然 DOM 对象可以通过 JS 对象来模拟,反之也可以通过 JS 对象来渲染出对应的 DOM
以下是一个 JS 对象模拟 DOM 对象的简单实现
export default class Element { /** * @param {String} tag 'div' * @param {Object} props { class: 'item' } * @param {Array} children [ Element1, 'text'] * @param {String} key option */ constructor(tag, props, children, key) { this.tag = tag this.props = props if (Array.isArray(children)) { this.children = children } else if (isString(children)) { this.key = children this.children = null } if (key) this.key = key } // 渲染 render() { let root = this._createElement( this.tag, this.props, this.children, this.key ) document.body.appendChild(root) return root } create() { return this._createElement(this.tag, this.props, this.children, this.key) } // 创建节点 _createElement(tag, props, child, key) { // 通过 tag 创建节点 let el = document.createElement(tag) // 设置节点属性 for (const key in props) { if (props.hasOwnProperty(key)) { const value = props[key] el.setAttribute(key, value) } } if (key) { el.setAttribute('key', key) } // 递归添加子节点 if (child) { child.forEach(element => { let child if (element instanceof Element) { child = this._createElement( element.tag, element.props, element.children, element.key ) } else { child = document.createTextNode(element) } el.appendChild(child) }) } return el }}
既然我们已经通过 JS 来模拟实现了 DOM,那么接下来的难点就在于如何判断旧的对象和新的对象之间的差异。
DOM 是多叉树的结构,如果需要完整的对比两颗树的差异,那么需要的时间复杂度会是 O(n ^ 3),这个复杂度肯定是不能接受的。于是 React 团队优化了算法,实现了 O(n) 的复杂度来对比差异。
实现 O(n) 复杂度的关键就是只对比同层的节点,而不是跨层对比,这也是考虑到在实际业务中很少会去跨层的移动 DOM 元素。
所以判断差异的算法就分为了两步
首先我们来实现树的递归算法,在实现该算法前,先来考虑下两个节点对比会有几种情况
tagName
或者 key
和旧的不同,这种情况代表需要替换旧的节点,并且也不再需要遍历新旧节点的子元素了,因为整个旧节点都被删掉了tagName
和 key
(可能都没有)和旧的相同,开始遍历子树import { StateEnums, isString, move } from './util'import Element from './element'export default function diff(oldDomTree, newDomTree) { // 用于记录差异 let pathchs = {} // 一开始的索引为 0 dfs(oldDomTree, newDomTree, 0, pathchs) return pathchs}function dfs(oldNode, newNode, index, patches) { // 用于保存子树的更改 let curPatches = [] // 需要判断三种情况 // 1.没有新的节点,那么什么都不用做 // 2.新的节点的 tagName 和 `key` 和旧的不同,就替换 // 3.新的节点的 tagName 和 key(可能都没有) 和旧的相同,开始遍历子树 if (!newNode) { } else if (newNode.tag === oldNode.tag && newNode.key === oldNode.key) { // 判断属性是否变更 let props = diffProps(oldNode.props, newNode.props) if (props.length) curPatches.push({ type: StateEnums.ChangeProps, props }) // 遍历子树 diffChildren(oldNode.children, newNode.children, index, patches) } else { // 节点不同,需要替换 curPatches.push({ type: StateEnums.Replace, node: newNode }) } if (curPatches.length) { if (patches[index]) { patches[index] = patches[index].concat(curPatches) } else { patches[index] = curPatches } }}
判断属性的更改也分三个步骤
function diffProps(oldProps, newProps) { // 判断 Props 分以下三步骤 // 先遍历 oldProps 查看是否存在删除的属性 // 然后遍历 newProps 查看是否有属性值被修改 // 最后查看是否有属性新增 let change = [] for (const key in oldProps) { if (oldProps.hasOwnProperty(key) && !newProps[key]) { change.push({ prop: key }) } } for (const key in newProps) { if (newProps.hasOwnProperty(key)) { const prop = newProps[key] if (oldProps[key] && oldProps[key] !== newProps[key]) { change.push({ prop: key, value: newProps[key] }) } else if (!oldProps[key]) { change.push({ prop: key, value: newProps[key] }) } } } return change}
这个算法是整个 Virtual Dom 中最核心的算法,且让我一一为你道来。 这里的主要步骤其实和判断属性差异是类似的,也是分为三步
PS:该算法只对有 key
的节点做处理
function listDiff(oldList, newList, index, patches) { // 为了遍历方便,先取出两个 list 的所有 keys let oldKeys = getKeys(oldList) let newKeys = getKeys(newList) let changes = [] // 用于保存变更后的节点数据 // 使用该数组保存有以下好处 // 1.可以正确获得被删除节点索引 // 2.交换节点位置只需要操作一遍 DOM // 3.用于 `diffChildren` 函数中的判断,只需要遍历 // 两个树中都存在的节点,而对于新增或者删除的节点来说,完全没必要 // 再去判断一遍 let list = [] oldList && oldList.forEach(item => { let key = item.key if (isString(item)) { key = item } // 寻找新的 children 中是否含有当前节点 // 没有的话需要删除 let index = newKeys.indexOf(key) if (index === -1) { list.push(null) } else list.push(key) }) // 遍历变更后的数组 let length = list.length // 因为删除数组元素是会更改索引的 // 所有从后往前删可以保证索引不变 for (let i = length - 1; i >= 0; i--) { // 判断当前元素是否为空,为空表示需要删除 if (!list[i]) { list.splice(i, 1) changes.push({ type: StateEnums.Remove, index: i }) } } // 遍历新的 list,判断是否有节点新增或移动 // 同时也对 `list` 做节点新增和移动节点的操作 newList && newList.forEach((item, i) => { let key = item.key if (isString(item)) { key = item } // 寻找旧的 children 中是否含有当前节点 let index = list.indexOf(key) // 没找到代表新节点,需要插入 if (index === -1 || key == null) { changes.push({ type: StateEnums.Insert, node: item, index: i }) list.splice(i, 0, key) } else { // 找到了,需要判断是否需要移动 if (index !== i) { changes.push({ type: StateEnums.Move, from: index, to: i }) move(list, index, i) } } }) return { changes, list }}function getKeys(list) { let keys = [] let text list && list.forEach(item => { let key if (isString(item)) { key = [item] } else if (item instanceof Element) { key = item.key } keys.push(key) }) return keys}
对于这个函数来说,主要功能就两个
总体来说,该函数实现的功能很简单
function diffChildren(oldChild, newChild, index, patches) { let { changes, list } = listDiff(oldChild, newChild, index, patches) if (changes.length) { if (patches[index]) { patches[index] = patches[index].concat(changes) } else { patches[index] = changes } } // 记录上一个遍历过的节点 let last = null oldChild && oldChild.forEach((item, i) => { let child = item && item.children if (child) { index = last && last.children ? index + last.children.length + 1 : index + 1 let keyIndex = list.indexOf(item.key) let node = newChild[keyIndex] // 只遍历新旧中都存在的节点,其他新增或者删除的没必要遍历 if (node) { dfs(item, node, index, patches) } } else index += 1 last = item })}
通过之前的算法,我们已经可以得出两个树的差异了。既然知道了差异,就需要局部去更新 DOM 了,下面就让我们来看看 Virtual Dom 算法的最后一步骤
这个函数主要两个功能
整体来说这部分代码还是很好理解的
let index = 0export default function patch(node, patchs) { let changes = patchs[index] let childNodes = node && node.childNodes // 这里的深度遍历和 diff 中是一样的 if (!childNodes) index += 1 if (changes && changes.length && patchs[index]) { changeDom(node, changes) } let last = null if (childNodes && childNodes.length) { childNodes.forEach((item, i) => { index = last && last.children ? index + last.children.length + 1 : index + 1 patch(item, patchs) last = item }) }}function changeDom(node, changes, noChild) { changes && changes.forEach(change => { let { type } = change switch (type) { case StateEnums.ChangeProps: let { props } = change props.forEach(item => { if (item.value) { node.setAttribute(item.prop, item.value) } else { node.removeAttribute(item.prop) } }) break case StateEnums.Remove: node.childNodes[change.index].remove() break case StateEnums.Insert: let dom if (isString(change.node)) { dom = document.createTextNode(change.node) } else if (change.node instanceof Element) { dom = change.node.create() } node.insertBefore(dom, node.childNodes[change.index]) break case StateEnums.Replace: node.parentNode.replaceChild(change.node.create(), node) break case StateEnums.Move: let fromNode = node.childNodes[change.from] let toNode = node.childNodes[change.to] let cloneFromNode = fromNode.cloneNode(true) let cloenToNode = toNode.cloneNode(true) node.replaceChild(cloneFromNode, toNode) node.replaceChild(cloenToNode, fromNode) break default: break } })}
Virtual Dom 算法的实现也就是以下三步
let test4 = new Element('div', { class: 'my-div' }, ['test4'])let test5 = new Element('ul', { class: 'my-div' }, ['test5'])let test1 = new Element('div', { class: 'my-div' }, [test4])let test2 = new Element('div', { id: '11' }, [test5, test4])let root = test1.render()let pathchs = diff(test1, test2)console.log(pathchs)setTimeout(() => { console.log('开始更新') patch(root, pathchs) console.log('结束更新')}, 1000)
当然目前的实现还略显粗糙,但是对于理解 Virtual Dom 算法来说已经是完全足够的了。
文章中的代码你可以在 阅读。本系列更新的文章都会更新在这个仓库中,有兴趣的可以关注下。
下篇文章的内容将会是状态管理,敬请期待。
原文发布时间为:2018年06月02日
原文作者:夕阳
本文来源: 如需转载请联系原作者